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INTRODUCTION

Recently, a manuscript was published with the objective
to complete a multivariable and multisite calibration
and validation for the Soil and Water Assessment Tool
(SWAT) model on the Motueka River basin by Cao et al.
(2006). Physically based distributed parameter models,
such as SWAT, have become a preferred tool to predict
watershed response not only at the watershed outlet,
but also at intermediate points within the watershed.
Calibrating and validating such models before they can
be applied to make watershed decisions is always a
challenge. A methodology to perform multisite and
multiparameter calibration should be of interest to a wide
rage of stakeholders working in the area of watershed
management. However, upon reviewing this paper, we
felt two topics warranted additional discussion.

MULTISITE CALIBRATION

Multisite calibrations are generally described using a mul-
tiobjective function. The purpose of this function is to
provide optimization criteria for the multiple modeling
objectives in a mathematical function (Gupta et al., 1998;
Yapo et al., 1998). Multiobjective functions are often pre-
sented in hydrologic modeling efforts that consider mul-
tiple sites and/or multiple variables or multiple modeling
objectives. Previously referred to as multiple objective
programming (Mendoza et al., 1986), this method was
further developed by Yan and Haan (1991) to include
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optimization or minimization criteria. Since then, gen-
eralized multiobjective functions have been defined in
literature to mathematically represent the optimization
of multiobjectives identified in a modeling effort. One
example of a general multiobjective function was pre-
sented by Yapo et al. (1998):

minimize F(0) = (f1(0), ..., fm(®)) 1)

w.r.t.0

where F is the multiobjective function and f(6),
... fm(0) are the m noncommensurable objective func-
tions to be simultaneously minimized with respect to the
parameters 6 of the model. The general format of the
multiobjective function presented in Equation 1 provides
a functional basis for devising specific multiobjective
functions. A similar approach was taken by White and
Chaubey (2005), who identified a multiobjective func-
tion that considered different variables, time steps, and
site locations for calibrating and validating a distributed
parameter model for watershed flow and water quality
response predictions:
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where F is the multiobjective function, O is observed,
P is predicted, f; is the relative error, f, is the
coefficient of determination, and f '3 is the Nash—Sutcliffe
coefficient, y is the number of years, ¢ is the number of
calibration sites, v is the number of variables evaluated
annually, m is the number of months, and w is the
number of variables evaluated monthly. Inclusion of
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multiobjective functions (such as Equation 1 and 2)
to express a complex calibration procedure provides a
clear indication of how the calibration procedure will
be performed. Hence, multiobjective functions provide
a concise expression of the calibration procedure and
minimize misinterpretation of how the calibration process
was performed.

In addition, multisite calibration of watershed models
is more appropriately applied to sites that are not hydro-
logically connected. We illustrate this point using the
two hypothetical watersheds presented in Figure 1. Each
watershed contains three sampling sites. In Watershed A,
Site 1 is independent of Sites 2 and 3; however, Site 2 is
hydrologically connected to Site 1, and Site 3 is hydro-
logically connected to Sites 1 and 2 due to their nested
characteristics. If a multisite calibration is performed on
this watershed, the catchment area contributing to Site
1 will be included in three different calibration proce-
dures. Another issue presented by nested calibration sites
is that bias may occur in the calibration process. For
example, if Site 1 is calibrated to achieve a specific sim-
ulated R? goal (as is the case described in Cao et al.,
2006), Sites 2 and 3 may require no additional calibra-
tion due to the minimization in error achieved with Site 1
calibration. Another approach to using nested watershed
sampling sites in model calibration is to not use multiple
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Figure 1. Two examples of watersheds are presented. Watershed A

contains three data collection sites that are nested so that two sites

encompass upstream site catchment areas; and Watershed B contains three

data collection sites that are mutually exclusive and do not encompass
upstream surface water catchment areas
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Figure 2. An example of a parameter is plotted with the model response

R? as a function of the parameter value. The ‘A’ designates the selected

value if the decision to stop calibration is R? > 0-4 and the ‘B’ designates

the selected value if the decision to stop calibration is to minimize the
error

Copyright © 2007 John Wiley & Sons, Ltd.

3227

sites for calibrating. Instead, use sites that are not nested
for calibration and the remaining, nested sites for model
validation.

Although nested data sites may be commonly found
due to monitoring strategies, nonnested or mutually
independent sites provide a better format for multisite
calibration. Example Watershed B represents an alter-
native scenario where the sampling sites are mutually
independent. Watershed B is an ideal candidate for mul-
tisite calibration since each site contributes to a larger
area but there are no catchment area overlaps.

Furthermore, the flow calibration depicted in Figure 3
of the Cao et al. (2006) manuscript does not represent
a multisite calibration. The flow calibration matrix pro-
vided by Cao et al. (2006) implies that each site (or catch-
ment area) was calibrated separately. This was further
indicated by text, which stated that ‘... multisite cali-
bration started with the subcatchments farthest upstream,
followed by the next downstream subcatchment . ... This
suggested that each site was calibrated independently
from the previous. Calibration that is completed one site
at a time deviates in the parameterization process from
those that calibrate multiple sites simultaneously. This
is primarily due to the parameterization structure in a
particular model. For the SWAT model, parameters are
spatially designated at three levels: watershed level, sub-
basin level, and Hydrologic Response Unit (HRU) level.
Watershed level is the largest spatial unit and includes the
entire modeled area; subbasins are hydrologically con-
nected subunits of the watershed; and HRUs are unique
combinations of soil and land cover within each subbasin.
Hence, if calibration sites are parameterized separately
and not simultaneously, parameter estimation may not be
appropriately completed for parameters that are specified
on the watershed level. For example, the watershed level
parameter set selected for one calibration site might be
different from the watershed level parameter set selected
for the next calibration site, which would result in modi-
fication of the selected parameters from the previous site
as well as modification of the calibration results.

CALIBRATION AND PARAMETER SELECTION

Watershed model calibration is part science and part
art. The science of calibration relies on the physical
relationships mathematically expressed in the model
and the inputs measured in the watershed to simulate
specific outputs. The art of watershed calibration includes
the calibration methods used, particularly for parameter
estimation. Hence, the replication of a modeling effort
can only be completed if these two aspects of the
modeling process are clearly defined.

The watershed model selected (as is the case of the
SWAT model) has been well documented (Arnold et al.,
1998; Srinivasan et al., 1998) and hence a detailed review
of its mechanics was not necessary. The manuscript
by Cao et al. (2006) included detailed information on
modifications to the modeling framework that were
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incorporated into their model simulations. However,
little information was presented regarding the parameter
estimation portion of the modeling process.

On the basis of information provided in the manuscript,
the parameters selected by Cao et al. (2006) for calibra-
tion were: CSC, CN, GW, and SW. Typically, parameter
selection for model calibration is based on sensitivity
analyses of the model for the outputs of interest. The
authors provide no explanation on how these three param-
eters were selected for model calibration. CN and CSC
are described in the manuscript as representing curve
number and canopy storage capacity, respectively. No
definitions of GW or SW are given and their identi-
ties are not deducible using the information presented.
The SWAT user’s manual and SWAT theoretical docu-
mentation (Neitsch et al., 2002a,b) does not contain a
parameter identified as GW or SW. There are several
parameters that affect base flow predictions by the SWAT
model, e.g. delay time for aquifer recharge (GW _Delay),
threshold water level in shallow aquifer for base flow,
base flow recession constant (GWQMN), revap coeffi-
cient (GW_REVAP) and many of these parameters have
been used by modelers to calibrate the base flow (White
and Chaubey, 2005 for a summary of these studies). Sim-
ilarly, SW is defined as water content of soil profile on
a given day (mm H,0), and thus, is not a parameter, but
an output calculated by the model.

In addition, the calibration procedure is identified as
‘adjust’. This implies that the parameters were modi-
fied in some way and once the set criteria were met,
calibration ended. Hence, parameter values that mini-
mized errors were not selected, but rather, parameter
values that met an R? designation were selected. This
calibration approach is limiting (Yan and Haan, 1991).
We graphically illustrated this limitation in Figure 2. A
more robust calibration process is one that requires some
degree of adjustment in a linear direction (either negative
or positive), followed by an iterative process to determine
the optimum parameter value. If merely an adjustment
is made to the parameter until a model prediction R>
numerical calculation is reached, error has not been
minimized, but merely reduced (Figure 2, ‘A’). A sound
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calibration should involve optimization or minimization
of a statistical measure (such as R? or Nash—Sutcliffe
coefficient). The concept of optimizing R? is illustrated
as ‘B’ in Figure 2. Hence, different parameter values
would be estimated depending on the technique chosen
(A=27,B=32).

The two topics we discussed, multisite calibration and
calibration and parameter selection, are directly related
to the appropriate application of a watershed model. Our
goal in this response was to address the weaknesses that
were present in the Cao et al. (2006) article regarding
their model calibration so that future modeling endeavors
might be completed with regard to our comments.
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